

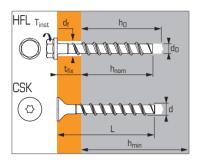








# Vis à béton pour béton fissuré et non fissuré














## **APPLICATION**

- Chemins de câbles
- Equerres
- E-Clips, corne de vache
- TRH clip, suspentes
- Goulottes
- Etais de banche
- Barrières de sécurité temporaires

## **MATIÈRE**

### Version zinguée:

Résistance à la traction mini : 700 N/mm²

Version HFL :

Zingage lamellaire (5 µm), EN ISO 10683 Brouillard salin: 500 heures

Version CSK :

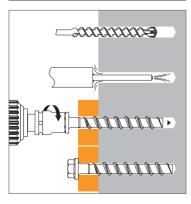
Acier zingué (5 µm mini.)

#### **Version inoxydable:**

Résistance à la traction mini : 700 N/mm<sup>2</sup>

Version HFL&CSK: Inox A4

## Caractéristiques techniques


| Versions | Dimensions | Profondeur d'enfoncement<br>minimum |                  |                | Profo            | Profondeur d'enfoncement maximum |                  |          | Ø<br>filetage    | Ø<br>perçage | Long.<br>totale | Couple de | Code              |  |
|----------|------------|-------------------------------------|------------------|----------------|------------------|----------------------------------|------------------|----------|------------------|--------------|-----------------|-----------|-------------------|--|
| er er    |            | Prof. d'                            | Epais.           | Prof. de       | Epais.           | Prof.d'                          | Epais.           | Prof. de |                  |              |                 |           | serrage           |  |
| _        |            | enfonce <sup>t</sup>                | max              | perçage        | min.             | enfonce <sup>t</sup>             | max              | perçage  | min.             |              |                 |           |                   |  |
|          |            | min.                                | pièce à          |                | support          | max.                             | pièce à          |          | support          |              |                 |           |                   |  |
|          |            |                                     | fixer            |                |                  |                                  | fixer            |          |                  |              |                 |           |                   |  |
|          |            | (mm)                                | (mm)             | (mm)           | (mm)             | (mm)                             | (mm)             | (mm)     | (mm)             | (mm)         | (mm)            | (mm)      | (Nm)              |  |
|          |            | h <sub>nom</sub>                    | t <sub>fix</sub> | h <sub>0</sub> | h <sub>min</sub> | h <sub>nom</sub>                 | t <sub>fix</sub> | ho       | h <sub>min</sub> | d            | do              | L         | T <sub>inst</sub> |  |

|     | 8X50/5        |    | 5   |    |     | -   | -  | -   | -   |      |    | 50  |    | 058733 |
|-----|---------------|----|-----|----|-----|-----|----|-----|-----|------|----|-----|----|--------|
|     | 8X60/15       |    | 15  |    |     | -   | -  | -   | -   |      |    | 60  |    | 058734 |
|     | 8X70/25-5     |    | 25  |    |     | 65  | 5  | 75  | 120 |      |    | 70  |    | 058735 |
|     | 8X80/35-15    | 45 | 35  | 55 | 100 | 65  | 15 | 75  | 120 | 10,6 | 8  | 80  | 20 | 058736 |
|     | 8X100/55-35   |    | 55  |    |     | 65  | 35 | 75  | 120 |      |    | 100 |    | 058737 |
|     | 8X120/75-55   |    | 75  |    |     | 65  | 55 | 75  | 120 |      |    | 120 |    | 058738 |
|     | 8X140/95-75   |    | 95  |    |     | 65  | 75 | 75  | 120 |      |    | 140 |    | 058739 |
|     | 10X60/5       |    | 5   |    |     | -   | -  | -   | -   |      |    | 60  |    | 058740 |
|     | 10X70/15      |    | 15  |    |     | -   | -  | -   | -   |      |    | 70  |    | 058741 |
| 똪   | 10X90/35-5    |    | 35  |    |     | 85  | 5  | 95  | 130 |      |    | 90  |    | 058742 |
| =   | 10X100/45-15  | 55 | 45  | 65 | 100 | 85  | 15 | 95  | 130 | 12,6 | 10 | 100 | 40 | 058743 |
|     | 10X120/65-35  |    | 65  |    |     | 85  | 35 | 95  | 130 |      |    | 120 |    | 058744 |
|     | 10X140/85-55  |    | 85  |    |     | 85  | 55 | 95  | 130 |      |    | 140 |    | 058745 |
|     | 10X160/105-75 |    | 105 |    |     | 85  | 75 | 95  | 130 |      |    | 160 |    | 058746 |
|     | 12X80/15      | 65 | 15  | 75 | 120 | -   | -  | -   | -   | 14,6 | 12 | 80  | 60 | 058747 |
|     | 12X110/45-10  | 00 | 45  | /0 | 120 | 100 | 10 | 110 | 150 | 14,0 | 12 | 110 | 00 | 058748 |
|     | 14X80/5       |    | 5   |    |     | -   | -  | -   | -   |      |    | 80  |    | 058766 |
|     | 14X110/35     | 75 | 35  | 85 | 130 | -   | -  | -   | -   | 16,6 | 14 | 110 | 80 | 058767 |
|     | 14X130/55-15  | /5 | 55  | 00 | 130 | 115 | 15 | 125 | 170 | 10,0 | 14 | 130 | 00 | 058768 |
|     | 14X150/75-35  |    | 75  | 75 |     | 115 | 35 | 125 | 170 |      |    | 150 |    | 058769 |
| CSK | 8X80/35-15    | 45 | 35  | 55 | 100 | 65  | 15 | 75  | 120 | 10,6 | 8  | 80  | 20 | 058778 |

### **Versions inox A4**

|   |   | 8X70/25-5    | 45 | 25 | 55 | 100 | 65 | 5  | 75 | 400 | 10.6 | 0  | 70  | 20 | 058809 |
|---|---|--------------|----|----|----|-----|----|----|----|-----|------|----|-----|----|--------|
|   |   | 8X80/35-15   | 40 | 35 | ວວ | 100 | 60 | 15 | /3 | 120 | 10,6 | 8  | 80  | 20 | 058810 |
| 1 | Ĕ | 10X90/35-5   |    | 35 |    |     |    | 5  |    |     |      |    | 90  |    | 058811 |
|   |   | 10X100/45-15 | 55 | 45 | 65 | 100 | 85 | 15 | 95 | 130 | 12,6 | 10 | 100 | 40 | 058812 |
|   |   | 10X120/65-35 |    | 65 |    |     |    | 35 |    |     |      |    | 120 |    | 058813 |
| } | 2 | 8X80/35-15   | 45 | 35 | 55 | 100 | 65 | 15 | 75 | 120 | 10,6 | 8  | 80  | 20 | 058814 |
| è | 3 | 10X90/35-5   | 55 | 35 | 65 | 100 | 85 | 5  | 95 | 130 | 12,6 | 10 | 90  | 40 | 058815 |

## METHODE DE POSE



## Propriétés mécaniques des chevilles

| Dimension<br>Zinguées &             | _                                 | Ø8   | Ø10  | Ø12   | Ø14   |
|-------------------------------------|-----------------------------------|------|------|-------|-------|
| As (mm <sup>2</sup> )               | Section résistante                | 39,6 | 65,0 | 97,7  | 134,0 |
| W <sub>el</sub> (mm <sup>3</sup> )  | Module d'inertie en flexion       | 35,1 | 74,0 | 134,0 | 220,0 |
| M <sup>0</sup> <sub>rk,s</sub> (Nm) | Moment de flexion caractéristique | 26,0 | 56,0 | 113,0 | 185,0 |
| M (Nm)                              | Moment de flexion admissible      | 13,0 | 28,0 | 56,5  | 92,5  |

# **TAPCON XTREM**





Les charges spécifiées sur cette page permettent de juger les performances du produit, mais ne peuvent pas être utilisées pour le dimensionnement. Il faut utiliser les performances données dans les pages suivantes (3/5 à 5/5).

## Résistances caractéristiques (N<sub>Rk</sub>, V<sub>Rk</sub>) en kN

Les charges moyennes de ruine et les résistances caractéristiques sont issues des résultats d'essais dans les conditions admissibles d'emploi.

#### **TRACTION**

| Dimensions<br>Zinguées & A4 | Ø8    | Ø10  | Ø12  | Ø14  |
|-----------------------------|-------|------|------|------|
| Béton non fissuré (C20      | 1/25) |      |      |      |
| h <sub>nom,min</sub>        | 45    | 55   | 65   | 75   |
| N <sub>Rk</sub>             | 7,5   | 12,0 | 16,0 | 22,3 |
| h <sub>nom,max</sub>        | 65    | 85   | 100  | 115  |
| N <sub>Rk</sub>             | 16,0  | 25,0 | 36,1 | 44,6 |
| Béton fissuré (C20/25)      |       |      |      |      |
| h <sub>nom,min</sub>        | 45    | 55   | 65   | 75   |
| N <sub>Rk</sub>             | 5,0   | 9,0  | 12,0 | 15,9 |
| h <sub>nom,max</sub>        | 65    | 85   | 100  | 115  |
| $N_{Rk}$                    | 12,0  | 20,2 | 25,8 | 31,8 |

## **CISAILLEMENT**

| Dimensions<br>Zinguées & A4 | Ø8            | Ø10        | Ø12  | Ø14  |
|-----------------------------|---------------|------------|------|------|
| Béton fissuré et non f      | issuré (C20/2 | <b>!5)</b> |      |      |
| V <sub>Rk</sub>             | 17,0          | 34,0       | 40,0 | 56,0 |

## Charges limites ultimes (N<sub>Rd</sub>, V<sub>Rd</sub>) pour une cheville en pleine masse en kN

$$N_{Rd} = \frac{N_{Rk} *}{\gamma_{Mc}}$$

\*Valeurs issues d'essais

$$V_{Rd} = \frac{V_{Rk} *}{\gamma_{Ms}}$$

#### **TRACTION**

| Dimensions<br>Zinguées & A4 | Ø8    | Ø10  | Ø12  | Ø14  |
|-----------------------------|-------|------|------|------|
| Béton non fissuré (C2       | 0/25) |      |      |      |
| h <sub>nom,min</sub>        | 45    | 55   | 65   | 75   |
| N <sub>Rd</sub>             | 5,0   | 8,0  | 10,7 | 14,9 |
| h <sub>nom,max</sub>        | 65    | 85   | 100  | 115  |
| N <sub>Rd</sub>             | 10,7  | 16,7 | 24,1 | 29,7 |
| Béton fissuré (C20/25       | i)    |      |      |      |
| h <sub>nom,min</sub>        | 45    | 55   | 65   | 75   |
| N <sub>Rd</sub>             | 3,3   | 6,0  | 8,0  | 10,6 |
| h <sub>nom,max</sub>        | 65    | 85   | 100  | 115  |
| N <sub>Rd</sub>             | 8,0   | 13,5 | 17,2 | 21,2 |
| $v_{Mc} = 1.5$              |       |      |      |      |

## **CISAILLEMENT**

| Dimensions<br>Zinguées & A4 | Ø8                                    | Ø10  | Ø12  | Ø14  |  |  |  |  |  |  |
|-----------------------------|---------------------------------------|------|------|------|--|--|--|--|--|--|
| Béton fissuré et non f      | Béton fissuré et non fissuré (C20/25) |      |      |      |  |  |  |  |  |  |
| $V_{Rd}$                    | 11,3                                  | 22,7 | 26,7 | 37,3 |  |  |  |  |  |  |

 $\gamma_{Ms} = 1,5$ 

## Charges recommandées (Nrec, Vrec) pour une cheville en pleine masse en kN

$$N_{rec} = \frac{N_{Rk} *}{\gamma_{M} \cdot \gamma_{F}}$$

\*Valeurs issues d'essais

$$V_{rec} = \frac{V_{Rk} *}{\gamma_{M.} \gamma_{F}}$$

## **TRACTION**

| Dimensions            |       |      |      |      |
|-----------------------|-------|------|------|------|
| Zinguées & A4         | Ø8    | Ø10  | Ø12  | Ø14  |
| Béton non fissuré (C2 | 0/25) |      |      |      |
| h <sub>nom,min</sub>  | 45    | 55   | 65   | 75   |
| N <sub>Rec</sub>      | 3,6   | 5,7  | 7,6  | 10,6 |
| h <sub>nom,max</sub>  | 65    | 85   | 100  | 115  |
| N <sub>Rec</sub>      | 7,6   | 11,9 | 17,2 | 21,2 |
| Béton fissuré (C20/2  | i)    |      |      |      |
| h <sub>nom,min</sub>  | 45    | 55   | 65   | 75   |
| N <sub>Rec</sub>      | 2,4   | 4,3  | 5,7  | 7,6  |
| h <sub>nom,max</sub>  | 65    | 85   | 100  | 115  |
| N <sub>Rec</sub>      | 5,7   | 9,6  | 12,3 | 15,1 |

 $\gamma_{Mc} = 1.5; \ \gamma_F = 1.4$ 

## CISAILLEMENT

| Dimensions<br>Zinguées & A4           | Ø8  | Ø10  | Ø12  | Ø14  |  |  |  |  |  |
|---------------------------------------|-----|------|------|------|--|--|--|--|--|
| Béton fissuré et non fissuré (C20/25) |     |      |      |      |  |  |  |  |  |
| V <sub>rec</sub>                      | 8,1 | 16,2 | 19,0 | 26,7 |  |  |  |  |  |
| 4.5                                   |     |      |      |      |  |  |  |  |  |

 $\gamma_{Ms} = 1,5$ 



# TAPCON XTRE

version zinguée & inoxydable 3/5

## SPIT Méthode CC

#### TRACTION en kN



#### ¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p} = N_{Rd,p}^0$$
 .  $f_b$ 

| N <sup>O</sup> Rd,p         | Résista | nce à l'ELU - ru | pture extractio | on-glissement |
|-----------------------------|---------|------------------|-----------------|---------------|
| Dimensions<br>Zinguées & A4 | Ø8      | Ø10              | Ø12             | Ø14           |
| Béton non fissuré (C2       | 20/25)  |                  |                 |               |
| h <sub>nom,min</sub>        | 45      | 55               | 65              | 75            |
| $N^{O}_{Rd,p}$              | 5,0     | 8,0              | 10,7            | -             |
| h <sub>nom,max</sub>        | 65      | 85               | 100             | 115           |
| N <sup>O</sup> Rd,p         | 10,7    | 16,7             | -               | -             |
| Béton fissuré (C20/2        | 5)      |                  |                 |               |
| h <sub>nom,min</sub>        | 45      | 55               | 65              | 75            |
| N <sup>O</sup> Rd,p         | 3,3     | 6,0              | 8,0             | -             |
| h <sub>nom,max</sub>        | 65      | 85               | 100             | 115           |
| N <sup>O</sup> Rd,p         | 8,0     | -                | -               | -             |
| 1 5                         |         |                  |                 |               |

 $\gamma_{Mc}=1,5$ 



## ¬ Résistance à la rupture cône béton

$$N_{\text{Rd,c}} = N^0_{\text{Rd,c}}$$
 .  $f_b$  .  $\Psi_s$  .  $\Psi_{c,N}$ 

| N <sup>O</sup> Rd,c            | Résistance à l'ELU - rupture cône béton |             |      |      |  |  |  |
|--------------------------------|-----------------------------------------|-------------|------|------|--|--|--|
| Dimensions<br>Zinguées & A4    | Ø8                                      | Ø10 Ø12 Ø14 |      |      |  |  |  |
| Béton non fissuré (C20/25)     |                                         |             |      |      |  |  |  |
| h <sub>nom,min</sub>           | 45                                      | 55          | 65   | 75   |  |  |  |
| N <sup>0</sup> <sub>Rd,c</sub> | 7,0                                     | 9,5         | 11,9 | 14,9 |  |  |  |
| h <sub>nom,max</sub>           | 65                                      | 85          | 100  | 115  |  |  |  |
| N <sup>O</sup> Rd,c            | 12,6                                    | 18,9        | 24,1 | 29,7 |  |  |  |
| Béton fissuré (C20/2           | 5)                                      |             |      |      |  |  |  |
| h <sub>nom,min</sub>           | 45                                      | 55          | 65   | 75   |  |  |  |
| N <sup>O</sup> Rd,c            | 5,0                                     | 6,8         | 8,5  | 10,6 |  |  |  |
| h <sub>nom,max</sub>           | 65                                      | 85          | 100  | 115  |  |  |  |
| N <sup>0</sup> Rd c            | 9.0                                     | 13.5        | 17.2 | 21.2 |  |  |  |



## ¬ Résistance à la rupture acier

| N <sub>Rd,s</sub>           | Résistance à l'ELU - rupture acier |      |      |      |  |
|-----------------------------|------------------------------------|------|------|------|--|
| Dimensions<br>Zinguées & A4 | Ø8                                 | Ø10  | Ø12  | Ø14  |  |
| $N_{Rd,s}$                  | 19,3                               | 32,1 | 47,9 | 67,1 |  |
| $\gamma_{Ms} = 1.4$         |                                    |      |      |      |  |

 $N_{Rd} = min(N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$  $\beta_N = N_{Sd} / N_{Rd} \le 1$ 

#### CISAILLEMENT en kN



#### ¬ Résistance à la rupture béton en bord de dalle

 $V_{Rd,c} = V_{Rd,c}^0$  .  $f_b$  .  $f_{\beta,V}$  .  $\Psi_{S-C,V}$ 

| V <sup>0</sup> Rd,c                     | Résistance à l'ELU - rupture béton bord de dalle<br>à la distance aux bords minimale (C <sub>min</sub> ) |                |     |     |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------|----------------|-----|-----|--|--|--|--|--|
| Dimensions<br>Zinguées & A4             | Ø8                                                                                                       | Ø8 Ø10 Ø12 Ø14 |     |     |  |  |  |  |  |
| h <sub>nom,min</sub>                    | 45                                                                                                       | 55             | 65  | 75  |  |  |  |  |  |
| C <sub>min</sub>                        | 40                                                                                                       | 50             | 50  | 50  |  |  |  |  |  |
| S <sub>min</sub>                        | 40                                                                                                       | 50             | 50  | 50  |  |  |  |  |  |
| V <sup>O</sup> Rd,c,non-fissuré         | 3,2                                                                                                      | 4,6            | 4,9 | 5,1 |  |  |  |  |  |
| V <sup>O</sup> Rd,c,fissuré             | 2,3                                                                                                      | 3,3            | 3,4 | 3,6 |  |  |  |  |  |
| h <sub>nom,max</sub>                    | 65                                                                                                       | 85             | 100 | 115 |  |  |  |  |  |
| C <sub>min</sub>                        | 50                                                                                                       | 50             | 70  | 70  |  |  |  |  |  |
| S <sub>min</sub>                        | 50                                                                                                       | 50             | 70  | 70  |  |  |  |  |  |
| V <sup>O</sup> Rd,c, <b>non-fissuré</b> | 4,6                                                                                                      | 5,0            | 8,3 | 8,8 |  |  |  |  |  |
| V <sup>O</sup> Rd,c,fissuré             | 3,3                                                                                                      | 3,6            | 5,9 | 6,2 |  |  |  |  |  |
|                                         |                                                                                                          |                |     |     |  |  |  |  |  |

 $\gamma_{Mc} = 1.5$ 

## ¬ Résistance à la rupture par effet de levier

 $V_{Rd,cp} = V^0_{Rd,cp}$  .  $f_b$  .  $\Psi_s$  .  $\Psi_{c,N}$ 

| V <sup>O</sup> Rd,cp            | Résistance à l'ELU - rupture par effet levier |             |      |      |  |  |  |
|---------------------------------|-----------------------------------------------|-------------|------|------|--|--|--|
| Dimensions<br>Zinguées & A4     | Ø8                                            | Ø10 Ø12 Ø14 |      |      |  |  |  |
| Béton non fissuré (C20          | <b>1/25)</b>                                  |             |      |      |  |  |  |
| h <sub>nom,min</sub>            | 45                                            | 55          | 65   | 75   |  |  |  |
| V <sup>0</sup> <sub>Rd,cp</sub> | 7,0                                           | 9,5         | 11,9 | 14,9 |  |  |  |
| h <sub>nom,max</sub>            | 65                                            | 85          | 100  | 115  |  |  |  |
| V <sup>O</sup> Rd,cp            | 12,6                                          | 37,8        | 48,2 | 59,4 |  |  |  |
| Béton fissuré (C20/25)          |                                               |             |      |      |  |  |  |
| h <sub>nom,min</sub>            | 45                                            | 55          | 65   | 75   |  |  |  |
| V <sup>0</sup> Rd,cp            | 5,0                                           | 6,8         | 8,5  | 10,6 |  |  |  |
| h <sub>nom,max</sub>            | 65                                            | 85          | 100  | 115  |  |  |  |
| V <sup>0</sup> Rd cn            | 9.0                                           | 26.9        | 34,3 | 42.4 |  |  |  |

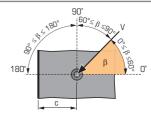
 $\gamma_{Mc} = 1,5$ 



## ¬ Résistance à la rupture acier

| V <sub>Rd,s</sub>           |      | Résistance à l'ELU - rupture acier |      |      |  |  |
|-----------------------------|------|------------------------------------|------|------|--|--|
| Dimensions<br>Zinguées & A4 | Ø8   | Ø10                                | Ø12  | Ø14  |  |  |
| $V_{Rd,s}$                  | 11,3 | 22,7                               | 26,7 | 37,3 |  |  |
| $\gamma_{Ms} = 1,5$         |      |                                    |      |      |  |  |

 $V_{Rd} = min(V_{Rd,c}; V_{Rd,cp}; V_{Rd,s})$  $\beta_V = V_{Sd} / V_{Rd} \le 1$ 


 $\beta_N + \beta_V \le 1,2$ 

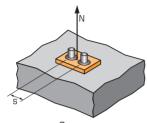
## f<sub>b</sub> INFLUENCE DE LA RESISTANCE DU BETON

| Classe de béton | f <sub>b</sub> | Classe de béton | $f_b$ |
|-----------------|----------------|-----------------|-------|
| C25/30          | 1,1            | C40/50          | 1,41  |
| C30/37          | 1,22           | C45/55          | 1,48  |
| C35/45          | 1,34           | C50/60          | 1,55  |

## INFLUENCE DE LA DIRECTION DE LA CHARGE DE **CISAILLEMENT**

| Angle β [°] | $f_{\beta,V}$ |
|-------------|---------------|
| 0 à 55      | 1             |
| 60          | 1,1           |
| 70          | 1,2           |
| 80          | 1,5           |
| 90 à 180    | 2             |




# **TAPCON XTREM**

4/5 version zinguée & inoxydable

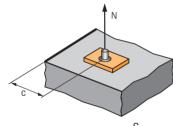


## SPIT Méthode CC

## $\Psi_{ m s}$ influence de l'entraxe sur la charge de traction pour la rupture cone beton



 $\Psi_{\rm S} = 0.5 + \frac{\rm S}{6.h_{\rm ef}}$ 


$$\begin{split} s_{min} &< s < s_{cr,N} \\ s_{cr,N} &= 3.h_{ef} \end{split}$$

 $\Psi_{\text{S}}$  doit être utilisé pour chaque entraxe agissant sur le groupe de chevilles.

| ENTRAXE S  | Coefficient de réduction $\Psi_{\mathbf{s}}$<br>Profondeur d'ancrage minimum |      |      |      |  |
|------------|------------------------------------------------------------------------------|------|------|------|--|
| Dimensions | Ø8                                                                           | Ø10  | Ø12  | Ø14  |  |
| 40         | 0,69                                                                         |      |      |      |  |
| 50         | 0,74                                                                         | 0,69 | 0,67 | 0,64 |  |
| 70         | 0,83                                                                         | 0,77 | 0,73 | 0,70 |  |
| 95         | 0,95                                                                         | 0,87 | 0,82 | 0,77 |  |
| 105        | 1,00                                                                         | 0,91 | 0,85 | 0,80 |  |
| 115        |                                                                              | 0,95 | 0,88 | 0,83 |  |
| 130        |                                                                              | 1,00 | 0,93 | 0,87 |  |
| 150        |                                                                              |      | 1,00 | 0,93 |  |
| 175        |                                                                              |      |      | 1,00 |  |

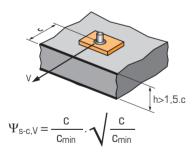
| ENTRAXE S  | Coefficient de réduction $\Psi_{s}$<br>Profondeur d'ancrage maximum |      |      |      |  |
|------------|---------------------------------------------------------------------|------|------|------|--|
| Dimensions | Ø8                                                                  | Ø10  | Ø12  | Ø14  |  |
| 50         | 0,66                                                                | 0,62 |      |      |  |
| 70         | 0,72                                                                | 0,67 | 0,65 | 0,63 |  |
| 100        | 0,82                                                                | 0,75 | 0,71 | 0,68 |  |
| 130        | 0,92                                                                | 0,82 | 0,77 | 0,74 |  |
| 155        | 1,00                                                                | 0,88 | 0,82 | 0,78 |  |
| 200        |                                                                     | 1,00 | 0,92 | 0,86 |  |
| 240        |                                                                     |      | 1,00 | 0,93 |  |
| 275        |                                                                     |      |      | 1,00 |  |

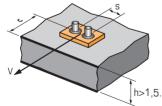
## Ψ<sub>cN</sub> INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON



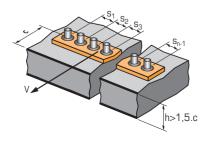
| $\Psi_{c,N} = 0.48 + 0.27$ . | С               |
|------------------------------|-----------------|
| 1 C,N = 0,40 + 0,27          | h <sub>ef</sub> |

$$\begin{split} c_{min} < c < c_{cr,N} \\ c_{cr,N} = 1,5.h_{ef} \end{split}$$


 $\Psi_{\text{c,N}}$  doit être utilisé pour chaque distance aux bords agissant sur le groupe de chevilles.


| DISTANCES   | Coefficient de réduction $\Psi_{c,N}$ |      |      |      |  |  |
|-------------|---------------------------------------|------|------|------|--|--|
| AUX BORDS C | Profondeur d'ancrage minimum          |      |      |      |  |  |
| Dimensions  | Ø8                                    | Ø10  | Ø12  | Ø14  |  |  |
| 50          | 0,96                                  | 0,83 | 0,75 | 0,68 |  |  |
| 55          | 1,00                                  | 0,88 | 0,80 | 0,73 |  |  |
| 60          |                                       | 0,94 | 0,85 | 0,77 |  |  |
| 65          |                                       | 1,00 | 0,89 | 0,81 |  |  |
| 75          |                                       |      | 1,00 | 0,89 |  |  |
| 90          |                                       |      |      | 1,00 |  |  |

| DISTANCES<br>AUX BORDS C | Coefficient de réduction $\Psi_{	extsf{c,N}}$<br>Profondeur d'ancrage maximum |      |      |      |
|--------------------------|-------------------------------------------------------------------------------|------|------|------|
| Dimensions               | Ø8                                                                            | Ø10  | Ø12  | Ø14  |
| 50                       | 0,73                                                                          | 0,62 |      |      |
| 65                       | 0,87                                                                          | 0,73 |      |      |
| 70                       | 0,92                                                                          | 0,76 | 0,69 | 0,64 |
| 80                       | 1,00                                                                          | 0,83 | 0,75 | 0,69 |
| 100                      |                                                                               | 1,00 | 0,87 | 0,79 |
| 120                      |                                                                               |      | 1,00 | 0,90 |
| 140                      |                                                                               |      |      | 1,00 |


Coefficient de réduction  $\Psi_{s-c,V}$ 

## $\Psi_{\text{s-c,V}}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE CISAILLEMENT POUR LA RUPTURE BORD DE DALLE





$$\Psi_{\text{s-c,V}} = \frac{3.\text{c} + \text{s}}{6.\text{c}_{\text{min}}} \cdot \sqrt{\frac{\text{c}}{\text{c}_{\text{min}}}}$$



## ¬ Cas d'une cheville unitaire

|                        |      |      |      |      |      |      |      |      | Coefficient de réduction $\Psi_{s-t}$<br>Béton fissuré & non fissur |      |      | fissuré |
|------------------------|------|------|------|------|------|------|------|------|---------------------------------------------------------------------|------|------|---------|
| $\frac{C}{C_{min}}$    | 1,0  | 1,2  | 1,4  | 1,6  | 1,8  | 2,0  | 2,2  | 2,4  | 2,6                                                                 | 2,8  | 3,0  | 3,2     |
| $\Psi_{	extsf{s-c,V}}$ | 1,00 | 1,31 | 1,66 | 2,02 | 2,41 | 2,83 | 3,26 | 3,72 | 4,19                                                                | 4,69 | 5,20 | 5,72    |

## ¬ Cas d'un groupe de 2 chevilles

|        |      |      |      |      |      |      |      |      | Bé   | ton fissu | ré & non | fissuré |
|--------|------|------|------|------|------|------|------|------|------|-----------|----------|---------|
| S Cmin | 1,0  | 1,2  | 1,4  | 1,6  | 1,8  | 2,0  | 2,2  | 2,4  | 2,6  | 2,8       | 3,0      | 3,2     |
| 1,0    | 0,67 | 0,84 | 1,03 | 1,22 | 1,43 | 1,65 | 1,88 | 2,12 | 2,36 | 2,62      | 2,89     | 3,16    |
| 1,5    | 0,75 | 0,93 | 1,12 | 1,33 | 1,54 | 1,77 | 2,00 | 2,25 | 2,50 | 2,76      | 3,03     | 3,31    |
| 2,0    | 0,83 | 1,02 | 1,22 | 1,43 | 1,65 | 1,89 | 2,12 | 2,38 | 2,63 | 2,90      | 3,18     | 3,46    |
| 2,5    | 0,92 | 1,11 | 1,32 | 1,54 | 1,77 | 2,00 | 2,25 | 2,50 | 2,77 | 3,04      | 3,32     | 3,61    |
| 3,0    | 1,00 | 1,20 | 1,42 | 1,64 | 1,88 | 2,12 | 2,37 | 2,63 | 2,90 | 3,18      | 3,46     | 3,76    |
| 3,5    |      | 1,30 | 1,52 | 1,75 | 1,99 | 2,24 | 2,50 | 2,76 | 3,04 | 3,32      | 3,61     | 3,91    |
| 4,0    |      |      | 1,62 | 1,86 | 2,10 | 2,36 | 2,62 | 2,89 | 3,17 | 3,46      | 3,75     | 4,05    |
| 4,5    |      |      |      | 1,96 | 2,21 | 2,47 | 2,74 | 3,02 | 3,31 | 3,60      | 3,90     | 4,20    |
| 5,0    |      |      |      |      | 2,33 | 2,59 | 2,87 | 3,15 | 3,44 | 3,74      | 4,04     | 4,35    |
| 5,5    |      |      |      |      |      | 2,71 | 2,99 | 3,28 | 3,71 | 4,02      | 4,33     | 4,65    |
| 6,0    |      |      |      |      |      | 2,83 | 3,11 | 3,41 | 3,71 | 4,02      | 4,33     | 4,65    |

### - Cas d'un groupe de 3 chevilles et plus

$$\Psi_{\text{s-c,V}} = \frac{3.c \, + \, \text{s}_1 \, + \, \text{s}_2 \, + \, \text{s}_3 \, + \ldots + \, \text{s}_{\text{n-1}}}{3.n.c_{\text{min}}} \, . \, \sqrt{\frac{c}{c_{\text{min}}}}$$



# TAPCON XTRE

version zinguée & inoxydable 5/5

## SPIT Méthode CC (valeurs issues de l'ETE - Sismigue catégorie C1)

#### TRACTION en kN



#### ¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p} = N_{Rd,p}^0$$
. fb

| N <sup>O</sup> Rd,p,C1                                                       | Résistance à l'ELU - rupture extraction-glissement |     |     |     |  |
|------------------------------------------------------------------------------|----------------------------------------------------|-----|-----|-----|--|
| Dimensions<br>Zinguées & A4                                                  | Ø8                                                 | Ø10 | Ø12 | Ø14 |  |
| Catégorie C1 - Cheville unitaire                                             |                                                    |     |     |     |  |
| h <sub>nom</sub>                                                             | 65                                                 | 85  | 100 | 115 |  |
| N <sup>O</sup> Rd,p,C1                                                       | 8,0                                                | -   | -   | -   |  |
| Catégorie C1 - Groupe de chevilles (1)                                       |                                                    |     |     |     |  |
| h <sub>nom</sub>                                                             | 65                                                 | 85  | 100 | 115 |  |
| N <sup>O</sup> Rd,p,C1                                                       | 6,8                                                | -   | -   | -   |  |
| (1) Cas où plus d'une cheville du groupe est soumise à un effort de traction |                                                    |     |     |     |  |

 $^{\mbox{\tiny LTJ}}$  Cas où plus d'une cheville du groupe  $\gamma_{\mbox{\scriptsize Mc}}=1,5$ 



### ¬ Résistance à la rupture cône béton

$$N_{Rd,c} = N_{Rd,c}^0$$
 . f<sub>b</sub> .  $\Psi_s$  .  $\Psi_{c,N}$ 

| N <sup>O</sup> Rd,c,C1                            |     | Résistance | à l'ELU - ruptu | re cône béton |  |
|---------------------------------------------------|-----|------------|-----------------|---------------|--|
| Dimensions<br>Zinguées & A4                       | Ø8  | Ø10        | Ø12             | Ø14           |  |
| Catégorie C1 - Cheville unitaire                  |     |            |                 |               |  |
| h <sub>nom</sub>                                  | 65  | 85         | 100             | 115           |  |
| N <sup>0</sup> Rd,c,C1                            | 7,6 | 11,4       | 14,6            | 18,0          |  |
| Catégorie C1 - Groupe de chevilles <sup>(1)</sup> |     |            |                 |               |  |
| h <sub>nom</sub>                                  | 65  | 85         | 100             | 115           |  |
| N <sup>O</sup> Rd,c,C1                            | 6,7 | 10,1       | 12,9            | 15,9          |  |
| 204 - 15                                          |     |            |                 |               |  |

 $\gamma_{Mc}$  = 1,5 (1) Cas où plus d'une cheville du groupe est soumise à un effort de traction  $\gamma_{Mc}$  = 1,5



### ¬ Résistance à la rupture acier

| N <sub>Rd,s,C</sub> 1 Résistance à l'ELU - ruptur |      |      |      |      |
|---------------------------------------------------|------|------|------|------|
| Dimensions<br>Zinguées & A4                       | Ø8   | Ø10  | Ø12  | Ø14  |
| N <sub>Rd,s,C1</sub>                              | 19,3 | 32,1 | 47,9 | 67,1 |

(1) Cas où plus d'une cheville du groupe est soumise à un effort de traction

 $\beta_N = N_{Sd} / N_{Rd} \le 1$ 

#### CISAILLEMENT en kN



#### ¬ Résistance à la rupture béton en bord de dalle

$$V_{Rd,c} = V_{Rd,c}^0$$
 . f<sub>b</sub> . f<sub>b,V</sub> .  $\Psi_{S-C,V}$ 

| V <sup>0</sup> Rd,c,C1                                                           | Rési           | Résistance à l'ELU - rupture béton bord de dalle<br>à la distance aux bords minimale (C <sub>min</sub> ) |     |     |  |  |
|----------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|-----|-----|--|--|
| Dimensions<br>Zinguées & A4                                                      | Ø8             | Ø10                                                                                                      | Ø12 | Ø14 |  |  |
| Catégorie C1 - Cheville unitaire                                                 |                |                                                                                                          |     |     |  |  |
| h <sub>nom</sub>                                                                 | 65             | 85                                                                                                       | 100 | 115 |  |  |
| C <sub>min</sub>                                                                 | 50             | 50                                                                                                       | 70  | 70  |  |  |
| Smin                                                                             | 50             | 50                                                                                                       | 70  | 70  |  |  |
| V <sup>0</sup> Rd,c,C1                                                           | 2,3            | 3,2                                                                                                      | 3,3 | 3,3 |  |  |
| Catégorie C1 - Group                                                             | e de chevilles | (1)                                                                                                      |     |     |  |  |
| h <sub>nom</sub>                                                                 | 65             | 85                                                                                                       | 100 | 115 |  |  |
| C <sub>min</sub>                                                                 | 50             | 50                                                                                                       | 70  | 70  |  |  |
| S <sub>min</sub>                                                                 | 50             | 50                                                                                                       | 70  | 70  |  |  |
| V <sup>0</sup> Rd,c,C1                                                           | 1,9            | 2,7                                                                                                      | 2,8 | 2,8 |  |  |
| (1) Cas où plus d'una abavilla du groupa ast soumisa à un affort de aisaillement |                |                                                                                                          |     |     |  |  |

(1) Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement  $\gamma_{Mc} = 1,5$ 



#### Résistance à la rupture par effet de levier

$$V_{Rd,cp} = V_{Rd,cp}^0$$
 . f<sub>b</sub> .  $\Psi_s$  .  $\Psi_{c,N}$ 

|                                                                       |      |      | ,    |      |  |  |
|-----------------------------------------------------------------------|------|------|------|------|--|--|
| V <sup>O</sup> Rd,cp,C1 Résistance à l'ELU - rupture par effet levier |      |      |      |      |  |  |
| Dimensions<br>Zinguées & A4                                           | Ø8   | Ø10  | Ø12  | Ø14  |  |  |
| Catégorie C1 - Cheville unitaire                                      |      |      |      |      |  |  |
| h <sub>nom</sub>                                                      | 65   | 85   | 100  | 115  |  |  |
| V <sup>O</sup> Rd,cp,C1                                               | 15,3 | 22,9 | 29,2 | 36,0 |  |  |
| Catégorie C1 - Groupe de chevilles (1)                                |      |      |      |      |  |  |
| h <sub>nom</sub>                                                      | 65   | 85   | 100  | 115  |  |  |
| V <sup>O</sup> Rd,cp,C1                                               | 13,5 | 20,2 | 25,8 | 31,8 |  |  |
| ··· - 15                                                              |      |      |      |      |  |  |

 $\gamma_{Mc}=1,5$  (1) Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement  $\gamma_{Mc}=1,5$ 



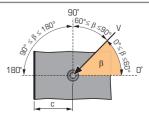
## ¬ Résistance à la rupture acier (2)

| V <sub>Rd,s,C1</sub>                   | Résis           | Résistance à l'ELU - rupture acier |                 |                 |  |
|----------------------------------------|-----------------|------------------------------------|-----------------|-----------------|--|
| Dimensions<br>Zinguées & A4            | Ø8              | Ø10                                | Ø12             | Ø14             |  |
| Catégorie C1 - Cheville unitaire       |                 |                                    |                 |                 |  |
| V <sub>Rd,s,C1</sub>                   | 5,7             | 10,2                               | 14,0            | 14,9            |  |
| Catégorie C1 - Groupe de chevilles (1) |                 |                                    |                 |                 |  |
| V <sub>Rd,s,C1</sub>                   | 4,8             | 8,7                                | 11,9            | 12,7            |  |
| (1) Coo où plue d'une                  | abavilla du ana | una aat aaumi                      | a à un affant d | a aigaillamaant |  |

(1) Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement (2) Condition trou de passage rempli  $\gamma_{\rm Ms}=1.5$ 

 $N_{Rd} = min(N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$ 

 $V_{Rd} = min(V_{Rd,c}; V_{Rd,cp}; V_{Rd,s})$  $\beta_V = V_{Sd} / V_{Rd} \le 1$ 


# $\beta_N + \beta_V \le 1,2$

## f<sub>b</sub> INFLUENCE DE LA RESISTANCE DU BETON

| Classe de béton | f <sub>b</sub> | Classe de béton | f <sub>b</sub> |
|-----------------|----------------|-----------------|----------------|
| C25/30          | 1,1            | C40/50          | 1,41           |
| C30/37          | 1,22           | C45/55          | 1,48           |
| C35/45          | 1,34           | C50/60          | 1,55           |

# INFLUENCE DE LA DIRECTION DE LA CHARGE DE

| Angle β [°] | $f_{\beta,V}$ |
|-------------|---------------|
| 0 à 55      | 1             |
| 60          | 1,1           |
| 70          | 1,2           |
| 80          | 1,5           |
| 90 à 180    | 2             |

