

Cheville à expansion par vissage à couple contrôlé, pour béton non fissuré

APPLICATION

- Charpentes et poutres en bois et
- Rails de guidage d'élévateurs
- Portes et portails industriels
- Cornières de soutien de maçonnerie
- Systèmes de stockage

MATIÈRE

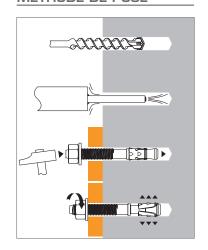
- Corps M6-M20 :

Façonné à froid, NFA 35-053 / Zinc électrogalvanisé (5 µm)

Douille :

Façonnée à froid, NFA 35-231

- Ecrou :


ou 8, ISO 898-2

- Rondelle :

Acier, NF E 25513

Classe de résistance de l'acier 6

MÉTHODE DE POSE

Caractéristiques techniques

Dimensions	S	Pro	ofondeur	d'ancra	ge minim	um	Pro	ofondeur	d'ancra:	ge maxim	um	Ø	Ø	Ø	Long.	Couple	Code
	Repérage lettres	Prof. ancrage min.	Prof. enfonce ^t	Epais. max. pièce	Prof. perçage	Epais. min. support	Prof. ancrage max.	Prof. enfonce ^t	Epais. max. pièce	Prof. perçage	Epais. min. support	filetage	perçage	passage	totale cheville	de serrage	
	Rep	(mm)	(mm)	à fixer (mm)	(mm)	(mm)	(mm)	(mm)	à fixer (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Nm)	
		h _{ef}	h _{nom}	t _{fix}	ho	h _{min}	h _{ef}	h _{nom}	t _{fix}	ho	h _{min}	d	do	df	L	T _{inst}	
6X45/5*	-			5					-						45		050510
6X55/15*	-	25,6	35	15	41	100	35	45	5	51	100	6	6	8	55	10	050520
6X85/45*	-	20,0	30	45	41	100	30	40	35	01	100	0	0	0	85	10	050530
6X64 percée*	-			-					-						64		056100
8X55/5	-		-	5					-						55		057450
8X70/20-10	С			20					10						70		057451
8X90/40-30	Е			40					30						90		057452
8X100/50-40	F	30	38	50	50	80	40	48	40	60	80	8	8	9	100	15	057453
8X115/65-55	G			65					55						115		057454
8X130/80-70	Н			80					70						130		057455
8X160/110-100	J			110					100						160		057456
10X65/5	-			5					-						65		057460
10X75/15-5	С			15					5						75		057461
10X85/25-15	D			25					15						85		057462
10X95/36-26	Е	40	50	36	60	100	50	60	26	70	100	10	10	12	95	30	057463
10X110/50-40	F			50					40						110		057464
10X125/65-55	G			65					55						125		057465
10X140/80-70	1			80					70						140		057466
10X160/100-90				100					90						160		057467
12X80/5	-			5					-						80		057470
12X100/25-10	F			25					10						100		057471
12x115/40-25	G			40					25						115		057472
12x125/50-35	H			50		400			35	00	400	4.0	4.0		125		057473
12X140/65-50	1	50	62	65	75	100	65	77	50	90	130	12	12	14	140	50	057474
12X160/85-70	J			85					70						160		057664
12X180/105-90				105					90						180		057576
12X220/145-130 12X290/215-200*	0			145 215					130						220 290		057477 057478
	-								200								
16X100/5	-			5					- 4E						100		057480
16X125/30-15	G			30					15						125		057481 057482
16X150/55-40		CE	00	55	OE	400	00	OE.	40	110	400	40	4.0	40	150	400	
16X170/75-60	K	65	80	75	95	130	80	95	60	110	160	16	16	18	170	100	057483
16X185/90-75	L			90					75 405						185		057484
16X235/140-125*	-			140					125						235		057485
16X300/205/190*	-			205					190						300		057486
20X150/10	-	400	440	10	400	000			-				00	00	150	100	057490
20X170/30	K	100	113	30	130	200	-	-	-	-	-	20	20	22	170	160	057491
20X220/80	0			80					-						220		057492

^{*} Non visé par l'ETE

Propri	Propriétés mécaniques des chevilles										
Dimension	IS	M6	M8	M10	M12	M16	M20				
Section au-dessus du cône											
f _{uk} (N/mm ²)	Résistance à la traction min.	700	750	750	750	700	600				
f _{yk} (N/mm ²)	Limite d'élasticité	580	600	600	600	570	580				
As (mm ²)	Section résistante	-	23,8	34,7	56,1	103,9	165,1				
Partie filetée											
f _{uk} (N/mm ²)	Résistance à la traction min.	600	650	650	650	600	500				
f _{yk} (N/mm ²)	Limite d'élasticité	420	420	420	420	480	410				
As (mm ²)	Section résistante	20,1	36,6	58	84,3	157	245				
$\mathbf{W_{el}}$ (mm 3)	Module d'inertie en flexion	12,71	31,23	62,3	109,17	277,47	540,9				
M ⁰ _{rk,s} (Nm)	Moment de flexion caractéristique	9	24	49	85	200	315,7				
M (Nm)	Moment de flexion admissible	3.7	9.8	20.0	34.7	81.6	90.5				

Les charges spécifiées sur cette page permettent de juger les performances du produit, mais ne peuvent pas être utilisées pour le dimensionnement. Il faut utiliser les performances données dans les pages suivantes (3/4 et 4/4).

Charges moyennes de ruine ($N_{Ru,m}$, $V_{Ru,m}$)/résistances caractéristiques (N_{Rk} , V_{Rk}) en kN

Les charges moyennes de ruine et les résistances caractéristiques sont issues des résultats d'essais dans les conditions admissibles d'emploi.

TRACTION

Dimensions	M6	M8	M10	M12	M16	M20
Profondeur d'ancrage m	inimum					
h _{ef}	25	30	40	50	65	100
$N_{Ru,m}$	6,0	11,5	17,3	26,1	43,6	60,1
N _{Rk}	4,5	8,7	12,3	21,5	35,1	45,0
Profondeur d'ancrage m	aximum					
h _{ef}	35	40	50	65	80	-
N _{Ru,m}	9,4	17,4	24,6	37,8	52,7	-
N _{Rk}	7,0	15,7	20,2	31,7	47,0	-

CISAILLEMENT

Dimensions	M6	M8	M10	M12	M16	M20
$V_{Ru,m}$	6,8	14,3	22,6	32,8	56,5	85,0
V _{Rk}	2,9	10,0	13,7	27,4	36,5	79,2

Charges limites ultimes (N_{Rd}, V_{Rd}) pour une cheville en pleine masse en kN

$$N_{Rd} = \frac{N_{Rk} *}{\gamma_{Mc}}$$

*Valeurs issues d'essais

$$V_{Rd} = \frac{V_{Rk} *}{\gamma_{Ms}}$$

TRACTION

Dimensions	M6	M8	M10	M12	M16	M20
Profondeur d'ancrag	e minimum					
h _{ef}	25	30	40	50	65	100
N _{Rd}	2,5	5,8	8,2	14,3	23,4	30,0
Profondeur d'ancrag	e maximum					
h _{ef}	35	40	50	65	80	-
N _{Rd}	3,8	10,5	13,5	21,1	31,3	-
4 =						

 $\gamma_{Mc} = 1,5$

CISAILLEMENT

Dimensions	M6	M8	M10	M12	M16	M20
V_{Rd}	2,3	8,0	11,0	21,9	29,2	52,8
1 25 pour M6 à l	116 ot	15	noun Mai	<u> </u>		

Charges recommandées (Nrec, Vrec) pour une cheville en pleine masse en kN

$$N_{rec} = \frac{N_{Rk} *}{\gamma_{M} \cdot \gamma_{F}}$$

*Valeurs issues d'essais

$$V_{rec} = \frac{V_{Rk} *}{\gamma_{M.\gamma F}}$$

TRACTION

Dimensions Profondeur d'ancrage m	M6	M8	M10	M12	M16	M20
h _{ef}	25	30	40	50	65	100
N _{rec}	1,7	4,2	5,9	10,2	16,7	21,4
Profondeur d'ancrage m	aximum					
h _{ef}	35	40	50	65	80	-
N _{rec}	2,7	7,5	9,6	15,1	22,4	-

 $\gamma_F = 1.4$; $\gamma_{Mc} = 1.5$

CISAILLEMENT

Dimensions	M6	M8	M10	M12	M16	M20
V _{rec}	1,7	5,7	7,8	15,7	20,9	37,7
w = 1 1 · w = 1 95						

 $\gamma_F = 1.4 \; ; \; \gamma_{Ms} = 1.25$

SPIT Méthode CC (valeurs issues de l'ETE)

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p} = N_{Rd,p}^0$$
 . f_b

N ⁰ _{Rd,p}		Résistance	à l'ELU - r	upture ext	traction-gl	issement
Dimensio	ons	M8	M10	M12	M16	M20
Profondeur	r d'ancrage mir	iimum				
h _{ef}		30	40	50	65	100
$N^{O}_{Rd,p}$	(C20/25)	5,0		-	-	
Profondeur	r d'ancrage ma	ximum				
h _{ef}		40	50	65	80	-
$N^{O}_{Rd,p}$	(C20/25)	-	-		-	

¬ Résistance à la rupture cône béton

$$N_{\text{Rd,c}} = N^0_{\text{Rd,c}}$$
 . f_b . Ψ_s . $\Psi_{c,N}$

N ⁰ Rd,c			Résistance à l'ELU - rupture cône béton					
Dimensions M8			M10	M12	M16	M20		
Profondeu	r d'ancrage minin	num						
h _{ef}		30	40	50	65	100		
N ^O Rd,c	(C20/25)	5,5	8,5	11,9	17,6	33,6		
Profondeu	r d'ancrage maxir	num						
h _{ef}		40	50	65	80	-		
N ⁰ Rd,c	(C20/25)	8,5	11,9	17,6	24,0	-		

 $\gamma_{Mc} = 1.5$

¬ Résistance à la rupture acier

V _{Rd,s} Résistance à l'ELU - rupture							
Dimensions	M8	M10	M12	M16	M20		
$V_{Rd,s}$	11,9	17,3	28,1	48,5	66,1		

 $\gamma_{Ms}=1,5$ pour M8 à M16 et $\gamma_{Ms}=1,4$ pour M20

 $N_{Rd} = min(N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$ $\beta_N = N_{Sd} / N_{Rd} \le 1$

CISAILLEMENT en kN

¬ Résistance à la rupture béton en bord de dalle

$$V_{Rd,c} = V^0_{Rd,c}$$
 . f_b . $f_{\beta,V}$. $\Psi_{S\text{-}C,V}$

V ⁰ Rd,c	,c Résistance à l'ELU - rupture béton bord de dalle à la distance aux bords minimale (C _{min})										
Dimension	ons	M8	M10	M12	M16	M20					
Profondeu	r d'ancrage minin	num									
h _{ef}		30	40	50	65	100					
C _{min}		50	65	100	100	100					
Smin		40	50	100	100	160					
V ⁰ Rd,c	(C20/25)	2,7	4,6	9,7	11,1	13,0					
	r d'ancrage maxir	num									
h _{ef}		40	50	65	80	-					
C _{min}		55	65	70	105	-					
Smin		45	60	70	90	-					
$V_{Rd,c}$	(C20/25)	3,3	4,8	6,0	12,5	-					

 $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture par effet de levier

$$V_{Rd,cp} = V_{Rd,cp}^0$$
 . f_b . Ψ_s . $\Psi_{c,N}$

V ⁰ Rd,cp		Rés	Résistance à l'ELU - rupture par effet levier							
Dimensio	ons	M8	M10	M12	M16	M20				
Profondeur d'ancrage minimum										
h _{ef}		30	40	50	65	100				
$V_{Rd,cp}$	(C20/25)	5,5	5,5 8,5		35,2	67,2				
	r d'ancrage maxii	num								
h _{ef}		40	50	65	80	-				
$V_{\text{Rd,cp}}$	(C20/25)	8,5	11,9	35,2	48,0	-				

 $\gamma_{Mcp} = 1.5$

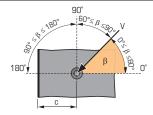
¬ Résistance à la rupture acier

$V_{Rd,s}$		Rési	stance à l'	ELU - rupt	ure acier
Dimensions	M8	M10	M12	M16	M20
$V_{Rd,s}$	8,0	11,0	21,9	29,2	40,7

 $\gamma_{Ms}=$ 1,25 pour M8 à M16 et $\gamma_{Ms}=$ 1,5 pour M20

 $V_{Rd} = min(V_{Rd,c}; V_{Rd,cp}; V_{Rd,s})$ $\beta_V = V_{Sd} / V_{Rd} \le 1$

 $\beta_N + \beta_V \le 1,2$

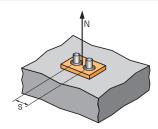

f_b INFLUENCE DE LA RESISTANCE DU BETON

Classe de béton	f _b	Classe de béton	f _b
C25/30	1,1	C40/50	1,41
C30/37	1,22	C45/55	1,48
C35/45	1,34	C50/60	1,55

$f_{\beta,V}$

INFLUENCE DE LA DIRECTION DE LA CHARGE DE CISAILLEMENT

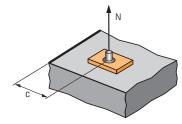
Angle β [°]	f _{β,} ν
O à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2



SPIT Méthode CC (valeurs issues de l'ETE)

$\Psi_{ extsf{s}}$ influence de l'entraxe sur la charge de traction pour la rupture cone beton

 $\Psi_{s} = 0.5 + \frac{s}{6.h_{ef}}$


$$\begin{split} s_{min} &< s < s_{cr,N} \\ s_{cr,N} &= 3.h_{ef} \end{split}$$

 Ψ_{S} doit être utilisé pour chaque entraxe agissant sur le groupe de chevilles.

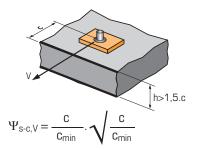
ENTRAXE S		Coefficient de réduction 4 Profondeur d'ancrage minimur							
Dimensions	M8	M10	M12	M16	M20				
40	0,72								
50	0,78	0,71							
65	0,86	0,77							
90	1,00	0,88							
100		0,92	0,83	0,76	0,72				
120		1,00	0,90	0,81	0,77				
150			1,00	0,88	0,83				
180				0,96	0,90				
195				1,00	0,93				
225					1,00				

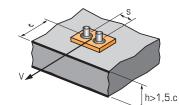
ľs m	ENTRAXE S		Coefficient de réduction Ψ_{s} Profondeur d'ancrage maximum							
0	Dimensions	M8	M10	M12	M16	M20				
	45	0,69								
	60	0,75	0,70							
	70	0,79	0,73	0,68						
	90	0,88	0,80	0,73	0,69					
2	100	0,92	0,83	0,76	0,71	0,67				
7	120	1,00	0,90	0,81	0,75	0,70				
3	150		1,00	0,88	0,81	0,75				
0	195			1,00	0,91	0,83				
3	220				0,96	0,87				
0	240				1,00	0,90				
	300					1,00				

$\Psi_{c,N}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON

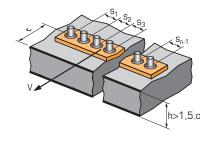
$\Psi_{c,N} = 0.23 + 0.51$.	С
1 C,N — U,LU T U,U I .	hef

$$\begin{split} c_{min} < c < c_{cr,N} \\ c_{cr,N} = 1, 5. h_{ef} \end{split}$$


 $\Psi_{\text{c},\text{N}}$ doit être utilisé pour chaque distance aux bords agissant sur le groupe de chevilles.


DISTANCES AUX BORDS C		Coefficient de réduction $\Psi_{ extsf{c,N}}$ Profondeur d'ancrage minimum							
Dimensions	M8	M20							
50	1,00								
65		1,00							
100			1,00						
100				1,00					
115					1,00				

DISTANCES AUX BORDS C		Coefficient de réduction $\Psi_{\text{c,N}}$ Profondeur d'ancrage maximum						
Dimensions	M8	M10	M12	M16	M20			
55	0,93							
60	1,00							
65		0,89						
70		0,94	0,78					
75		1,00	0,82					
100			1,00					
105				0,90				
110				0,93				
120				1,00	0,84			
130					0,89			
150					1,00			


Coefficient de réduction $\Psi_{s-r,v}$

$\Psi_{ ext{s-c,V}}$ Influence de la distance aux bords sur la charge de cisaillement pour la rupture bord de dalle

$$\Psi_{\text{s-c,V}} = \frac{3.\text{c} + \text{s}}{6.\text{c}_{\text{min}}} \cdot \sqrt{\frac{\text{c}}{\text{c}_{\text{min}}}}$$

¬ Cas d'une cheville unitaire

										В	eton non	fissuré
C C _{min}	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
$\Psi_{s-c,V}$	1,00	1,31	1,66	2,02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

¬ Cas d'un groupe de 2 chevilles

										В	éton non	fissuré
S Cmin	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16
1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31
2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,12	2,38	2,63	2,90	3,18	3,46
2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61
3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76
3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91
4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05
4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20
5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35
5,5						2,71	2,99	3,28	3,71	4,02	4,33	4,65
6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65

¬ Cas d'un groupe de 3 chevilles et plus

$$\Psi_{\text{s-c,V}} = \frac{3.c \, + \, s_1 \, + \, s_2 \, + \, s_3 \, + \ldots + \, s_{\text{n-1}}}{3.n.c_{\text{min}}} \cdot \sqrt{\frac{c}{c_{\text{min}}}}$$